An Antiderivative

$$
\text { of } x^{\alpha-1} e^{\beta x}
$$

$$
(\alpha, \beta>0)
$$

[^0]
1. Tools

Def.: Let J be a non-empty interval of \mathbb{R}.
Let $\phi: J \rightarrow \mathbb{R}$ be a mapping.
We now define:

1. $\phi: J \rightarrow \mathbb{R}$ is convex, iff
$\forall x, y \in J \quad \forall t \in[0 ; 1] \quad \phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y)$
2. Let $\phi(J) \subseteq \mathbb{R}_{+}$.
$\phi: \mathcal{J} \rightarrow \mathbb{R}$ is logarithmically convex, iff
$\ln (\phi): J \rightarrow \mathbb{R}$ is convex

Rem. : Let $\phi(J) \subseteq \mathbb{R}_{+}$.
Because exp: $\mathbb{R} \rightarrow \mathbb{R}$ is convex and monotonically increasing, we get the following:
$(\phi: J \rightarrow \mathbb{R}$ is logarithmically convex) \Rightarrow
$(\phi: \mathcal{J} \rightarrow \mathbb{R}$ is convex)

Theo.:

Pre.: Let J be a non-empty interval of \mathbb{R}.
Let $\phi: J \rightarrow \mathbb{R}$ be a differentiable mapping.
Ass.: $\quad(\phi: J \rightarrow \mathbb{R}$ is convex) \Leftrightarrow
$\left(\phi^{\prime}: J \rightarrow \mathbb{R}\right.$ is monotonically increasing)

Theo.:
Pre.: Let J be a non-empty interval of \mathbb{R}.
Let $\phi: J \rightarrow \mathbb{R}$ be a 2-times differentiable mapping.
Ass.: $\quad(\phi: J \rightarrow \mathbb{R}$ is convex) \Leftrightarrow
$\phi^{\prime \prime} \geq 0$

2. Gamma-Function

The Gamma-Funktion $\Gamma: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is for all $\alpha \in \mathbb{R}_{+}$defined through the absolutely convergent integral

$$
\Gamma(\alpha):=\underbrace{\int_{0}^{\infty} \tau^{\alpha-1} \cdot e^{-\tau} d \tau}_{>0}
$$

From literature we have:

$$
\begin{align*}
& \Gamma: \mathbb{R}_{+} \rightarrow \mathbb{R} \text { is analytically } \tag{1}\\
& \forall \alpha \in \mathbb{R}_{+} \quad \Gamma(\alpha+1)=\alpha \cdot \Gamma(\alpha) \tag{2}\\
& \forall k \in \mathbb{N}_{0} \quad \Gamma(k+1)=k!
\end{align*}
$$

$$
\Gamma: \mathbb{R}_{+} \rightarrow \mathbb{R} \text { is logarithmically convex }
$$

(and ergo convex)

$$
\begin{equation*}
\Gamma(1)=1 \text { and } \Gamma(2)=1 \tag{5}
\end{equation*}
$$

With (4) and (5) we have:

$$
\begin{equation*}
\Gamma \text { । }[2 ; \infty[\text { is monotonically increasing } \tag{6}
\end{equation*}
$$

3. Idea

Let $x=\left(i d_{\mathbb{R}}\right) \mid \mathbb{R}_{+}$.
We now define a mapping $\gamma:]-1 ; \infty[\rightarrow \mathbb{R}$ through

$$
\forall u \in]-1 ; \infty[\quad \gamma(u):=\Gamma(u+1)
$$

Then we have with (2):

$$
\begin{equation*}
\forall v \in]-1 ; \infty[\quad \gamma(v+1)=(v+1) \gamma(v) \tag{7}
\end{equation*}
$$

In addition we have with (6):

$$
\begin{equation*}
\gamma \mid[1 ; \infty[\text { is monotonically increasing } \tag{8}
\end{equation*}
$$

Further we define for all $\alpha \in \mathbb{R}_{+}$the mapping $f_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ through

$$
\begin{equation*}
f_{\alpha}:=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\gamma(n+\alpha)} \cdot x^{n+\alpha}=x^{\alpha} \cdot\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\gamma(n+\alpha)} \cdot x^{n}\right) \tag{9}
\end{equation*}
$$

We have (because of (3) and (8)) for all $\alpha \in \mathbb{R}_{+}$, $t \in \mathbb{R}$ and $k \in \mathbb{N}$ mit $k \geq 1$:

$$
\begin{aligned}
\sum_{n=0}^{k}\left|\frac{(-1)^{n}}{\gamma(n+\alpha)} \cdot t^{n}\right| & =\frac{1}{\gamma(\alpha)}+\sum_{n=1}^{k} \frac{1}{\gamma(n+\alpha)} \cdot|t|^{n} \leq \\
& \leq \frac{1}{\gamma(\alpha)}+\sum_{n=1}^{k} \frac{1}{\gamma(n)} \cdot|t|^{n}= \\
& =\frac{1}{\Gamma(\alpha+1)}+\sum_{n=1}^{k} \frac{1}{\Gamma(n+1)} \cdot|t|^{n}= \\
& =\frac{1}{\Gamma(\alpha+1)}+\sum_{n=1}^{k} \frac{1}{n!} \cdot|t|^{n} \leq \\
& \leq \frac{1}{\Gamma(\alpha+1)}+\sum_{n=0}^{k} \frac{1}{n!} \cdot|t|^{n} \leq \\
& \leq \frac{1}{\Gamma(\alpha+1)}+e^{|t|}
\end{aligned}
$$

So (9) defines a differentiable mapping and because of (2), (7) and (9) we have for all $\alpha \in \mathbb{R}_{+}$:

$$
\begin{aligned}
\left(f_{\alpha}\right)^{\prime} & =\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\gamma(n+\alpha)} \cdot x^{n+\alpha}\right)^{\prime}= \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\gamma(n+\alpha)} \cdot\left(x^{n+\alpha}\right)^{\prime}= \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{(n+\alpha)}{\gamma(n+\alpha)} \cdot x^{n+\alpha-1}= \\
& =\frac{\alpha}{\gamma(\alpha)} \cdot x^{\alpha-1}+\sum_{n=1}^{\infty}(-1)^{n} \frac{(n+\alpha)}{\gamma(n+\alpha)} \cdot x^{n+\alpha-1}= \\
& =\frac{\alpha}{\gamma(\alpha)} \cdot x^{\alpha-1}+\sum_{n=0}^{\infty}(-1)^{n+1} \frac{(n+\alpha+1)}{\gamma(n+\alpha+1)} \cdot x^{n+\alpha}= \\
& =\frac{\alpha}{\gamma(\alpha)} \cdot x^{\alpha-1}-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\gamma(n+\alpha)} \cdot x^{n+\alpha}= \\
& =\frac{\alpha}{\Gamma(\alpha+1)} \cdot x^{\alpha-1}-f_{\alpha}= \\
& =\frac{1}{\Gamma(\alpha)} \cdot x^{\alpha-1}-f_{\alpha}
\end{aligned}
$$

Now we have proved:

$$
\forall \alpha \in \mathbb{R}_{+}\left(\begin{array}{l}
f_{\alpha} \text { is differentiable and } \tag{10}\\
\text { it suffices the ordinary } \\
\text { linear differential equation } \\
\left(y_{\alpha}\right)^{\prime}+y_{\alpha}=\frac{1}{\Gamma(\alpha)} \cdot x^{\alpha-1} \text { on } \mathbb{R}_{+}
\end{array}\right)
$$

4. Solution of the ODE

In [2] one can find the following theorem:

Theo.:

Pre.: Let J be a non-emtpy open interval of \mathbb{R}.
Let $g: J \rightarrow \mathbb{R}$ be a continuous mapping.
Let $h: J \rightarrow \mathbb{R}$ be a continuous mapping.
Let $\xi \in J$.
Let $\eta \in \mathbb{R}$.

Ass.: The initial-value problem

$$
\begin{equation*}
y^{\prime}+g(t) y=h(t) \quad y(\xi)=\eta \quad t \in J \tag{11}
\end{equation*}
$$

has exactly one solution. It exists in all of J.

Rem.: Let $G: J \rightarrow \mathbb{R}$ be the antiderivative of $g: J \rightarrow \mathbb{R}$ with $G(\xi)=0, i . e$.

$$
\forall t \in J \quad G(t)=\int_{\xi}^{t} g(\tau) d \tau
$$

Then the solution of the initial-value problem above is:

$$
\begin{equation*}
\forall t \in J \quad y(t)=e^{-G(t)} \cdot\left(\eta+\int_{\xi}^{t} h(\tau) \cdot e^{G(\tau)} d \tau\right) \tag{12}
\end{equation*}
$$

5. Application of the Previous Theorem

Let $\alpha \in \mathbb{R}_{+}$.
Let $x=\left(i d_{\mathbb{R}}\right) \mid \mathbb{R}_{+}$.
In the specific case of section 3 . is $J=\mathbb{R}_{+}$and the mappings $g: J \rightarrow \mathbb{R}$ and $h: J \rightarrow \mathbb{R}$ are defined by

$$
\begin{array}{ll}
\forall t \in J & g(t):=1 \\
\forall t \in J & h(t):=\frac{1}{\Gamma(\alpha)} \cdot t^{\alpha-1}
\end{array}
$$

We now define a mapping $T_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\forall t \in J \quad T_{\alpha}(t):=\Gamma(\alpha) \cdot f_{\alpha}(t) \cdot e^{t} \tag{13}
\end{equation*}
$$

We prove finally:

$$
T_{\alpha} \text { is a antiderivative of } x^{\alpha-1} \cdot e^{x} \text { on } \mathbb{R}_{+}
$$

i. e.

$$
\begin{equation*}
\forall t, \xi \in J \quad T_{\alpha}(t)-T_{\alpha}(\xi)=\int_{\xi}^{t} \tau^{\alpha-1} \cdot e^{\tau} d \tau \tag{14}
\end{equation*}
$$

Proof of (14):
Let $\xi \in J$. The antiderivative $G: J \rightarrow \mathbb{R}$ of $g: J \rightarrow \mathbb{R}$ with $G(\xi)=0$ has the following form:

$$
\forall t \in J \quad G(t)=\int_{\xi}^{t} g(\tau) d \tau=t-\xi
$$

Because of (10), f_{α} is a solution of the initial-value problem

$$
y^{\prime}+g(t) y=h(t) \quad y(\xi)=f_{\alpha}(\xi) \quad t \in J
$$

it follows with (12) for any $t \in \mathbb{R}_{+}$:

$$
\begin{aligned}
f_{\alpha}(t) & =e^{\xi-t} \cdot\left(f_{\alpha}(\xi)+\int_{\xi}^{t} h(\tau) \cdot e^{\tau-\xi} d \tau\right)= \\
& =e^{-t} \cdot\left(f_{\alpha}(\xi) \cdot e^{\xi}+\int_{\xi}^{t} h(\tau) \cdot e^{\tau} d \tau\right)= \\
& =e^{-t} \cdot\left(f_{\alpha}(\xi) \cdot e^{\xi}+\frac{1}{\Gamma(\alpha)} \int_{\xi}^{t} \tau^{\alpha-1} \cdot e^{\tau} d \tau\right)
\end{aligned}
$$

This can be transformed:

$$
\forall t \in J \quad \Gamma(\alpha) \cdot\left(f_{\alpha}(t) \cdot e^{t}-f_{\alpha}(\xi) \cdot e^{\xi}\right)=\int_{\xi}^{t} \tau^{\alpha-1} \cdot e^{\tau} d \tau
$$

i. e.

$$
\forall t \in J \quad T_{\alpha}(t)-T_{\alpha}(\xi)=\int_{\xi}^{t} \tau^{\alpha-1} \cdot e^{\tau} d \tau
$$

So (14) is proved.

6. Limites

Let $\alpha \in \mathbb{R}_{+}$
Let $x=\left(i d_{\mathbb{R}}\right) \mid \mathbb{R}_{+}$.
With (9) we have:

$$
\begin{aligned}
& f_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R} \text { is continuously extendible in } 0 \text { and } \\
& \lim _{\xi \rightarrow 0+} f_{\alpha}(\xi)=0
\end{aligned}
$$

With (13) we have:

$$
\begin{aligned}
& T_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R} \text { is continuously extendible in } 0 \text { and } \\
& \lim _{\xi \rightarrow 0+} T_{\alpha}(\xi)=0
\end{aligned}
$$

It follows with (14):

$$
\forall t \in \mathbb{R}_{+} \int_{\xi}^{t} \tau^{\alpha-1} \cdot e^{\tau} d \tau \text { converges for }(\xi \rightarrow 0+)
$$

and

$$
\forall t \in \mathbb{R}_{+} T_{\alpha}(t)=\lim _{\xi \rightarrow 0+} \int_{\xi}^{t} \tau^{\alpha-1} \cdot e^{-\tau} d \tau=\int_{0}^{t} \tau^{\alpha-1} \cdot e^{-\tau} d \tau
$$

and
You can get an antiderivative of $x^{\alpha-1} \cdot e^{\beta x}$ by the substitution $\tau \mapsto \beta \tau \quad\left(\beta \in \mathbb{R}_{+}\right)$.

7. Literature

[1] Jürgen Neukirch, „Algebraische Zahlentheorie" Springer-Verlag Berlin Heidelberg New York
[2] Wolfgang Walter
„Gewöhnliche Differentialgleichungen"
Springer-Verlag Berlin Heidelberg New York
[3] Bronstein - Semendjajew
"Taschenbuch der Mathematik"
Verlag Harri Deutsch, Thun und Frankfurt (Main)
[4] www.Wikipedia.org
[5] N. N. Lebedev
„,Special Functions \& Their Applications"
Dover Publications, Inc., New York
[6] Milton Abramowitz and Irene Stegun "Handbook of Mathematical Functions"
Dover Publications, Inc., New York

[^0]: Christian Reinbothe
 Sudermanplatz 8 - 10
 50670 Köln
 Germany
 http://WWW.Reinbothe.DE

